A CNDO/2 STUDY OF REACTIVITY OF METHYLENE GROUP IN 1-METHYL-1,4-DIHYDRONICOTINAMIDE*

Jiří KRECHL and Josef KUTHAN

Department of Organic Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Received June 15th, 1981

An attempt has been made to use the CNDO/2 method for prediction of the reaction profile and electronic mechanism of elimination of 4-hydrogen atom of 1-methyl-1,4-dihydronicotinamide (I).

According to available knowledge biochemical reductions with NADH coenzyme proceed in such way that one of the 4-hydrogen atoms of the nicotinamide part of the coenzyme is transferred to the substrate molecule¹⁻³. Although electronic mechanism of this reduction step is not fully understood yet, a number of authors presume that it involves a hydride transfer⁴. Our previous communication dealt with mechanism of this process with the use of the EHT method. By this method it was found that nature of the particle eliminated from the 4-position of 1-methyl-1,4-dihydronicotinamide (I) approaches that of hydride anion. With respect to strongly approximative character of the EHT method we decided to study this process in more detail by the CNDO/2 method respecting the electron repulsion.

CALCULATIONS

All the calculations were carried out with an ICL-4-72 computer using the standard CNDO/2 program. The used parameters were the same as those used in ref.⁶. The starting geometry of I was either that used in ref.⁵ or that obtained by gradient optimization on the basis of the CNDO/2 wave functions⁷.

RESULTS AND DISCUSSION

The above-mentioned abstraction of hydrogen atom from 4 position was modelled in the following way (Fig. 1): the hydrogen atom H(4') was carried away from its original position in the direction of original bond C(4)—H(4') according to the *a* parameter, and at the same time the C(4) carbon centre was rehybridized, which

Part XV in the series On Calculations of Biologically Important Compounds; Part XIV: This Journal 46, 740 (1981).

1622

was modelled by tilting the H(4") atom towards the plane of the heterocycle according to the φ parameter. The value $\varphi = 54.7^{\circ}$ corresponds to location of the H(4") atom in the heterocycle plane. In the previous study⁵ the EHT method was used for testing the *a* and φ parameters and selecting those which corresponded to the optimum energy course. There arises a problem whether the EHT energy hypersurfaces will not show detailed differences from those obtained by the CNDO/2 method in the region investigated. Therefore, we carried out a complete CNDO/2 calculation of the dependence of total energies $E_{CNDO/2}$ on the geometry parameters *a* and φ for the molecule *I*

TABLE I

Dependence of CNDO/2 energy on combination of a and φ geometry parameters for abstraction of H(4') centre from the original (non-optimized) geometry of the molecule I Relative energy

φ , °	<i>a</i> , pm	Relative energy kJ mol ⁻¹	
 0.0	0	0.0	
13.7	25	110.4	
13.7	50	366.5	
27.4	75	627.7	
27.4	100	822.7	
41.1	125	966.7	
41-1	150	1 058-4	
54.7	175	1 123.0	
54.7	200	1 164.5	
54.7	250	1 216.6	
54.7	300	1 246.5	
54.7	350	1 265.8	
54.7	400	1 280.3	
54.7	450	1 290.9	
54.7	500	1 297.6	

Fig. 1

Schematic representation of abstraction of H(4') hydrogen centre and simultaneous rehybridization of C(4) carbon centre in molecule I

(Fig. 2) and its cation radical I^{++} (Fig. 3). For investigation of the studied section of the hypersurface we used the geometry according to ref.⁷. From Figs 2 and 3 it follows that the optimum energy course is connected with the same combination of the *a* and φ parameters as that in the case of the EHT study⁵. Table I summarizes the energy dependence on the *a* and φ parameters for the optimum reaction coordinate. From the table it is obvious that, in contrast to the EHT course⁵, the energy increases with increasing parameter *a*, no energy barrier similar to the EHT results being observed. Tables II and III summarize the charges and electron densities at some atoms at individual points of the reaction pathway. From Table II it is obvious that increasing distance of the H(4') atom from the heterocycle is connected with increasing charge at this atom up to a maximum at the arrangement described by the values a = 250 pm, $\varphi = 54.7^{\circ}$, when the hydrogen carries a charge -0.41; further increase of the distance causes a slight decrease of the charge. The H(4'') atom does not markedly change its character. It is interesting that the C(4) centre acquires a somewhat negative character during the abstraction, whereas the adjacent carbon atoms C(3) and C(5) show

Dependence of change of total CNDO/2 energy of the molecule *I* on geometry parameters *a* and φ . The curves 1, 2, 3, 4, and 5 correspond to the values $\varphi = 0^\circ$, 13·7°, 27·4°, 41·1°, and 54·7°, respectively. Heavy line corresponds to the CNDO/2 approximation of reaction profile. Ax y: ΔE , 10^4 . kJ mol⁻¹

Dependence of change of total CNDO/2 energy of radical cation $I^{+\cdot}$ on geometry parameters *a* and φ . The curves 1, 2, 3, 4, and 5 correspond to the values $\varphi = 0^{\circ}$, 13-7°, 27-4°, 41-1°, and 54-7°, respectively. Heavy line corresponds to the CNDO/2 approximation of the reaction profile

a slight decrease of negative charge. The electron densities given in Table III indicate a weakening of σ character of the H(4')--C(4) bond and (on the contrary) strenghtening of π interaction between the centre being abstracted and the heterocycle, which can be seen from the interaction of the respective atomic orbitals representing the C(4) - H(4') bond for the heterocycle localized in the xy plane. Table IV gives the expansion coefficients of the frontier orbitals HOMO and LUMO. It is obvious that, in the course of the abstraction of the H(4') atom, both localization of the HOMO and contribution of the LUMO are markedly increased at this atom. Similarly the LUMO is more and more markedly localized at the C(4) atom. This finding can be interpreted by the character of the H(4') centre approaching to a radical during abstraction, i.e. to a system having simultaneously electron-donor and -acceptor character. A similar calculation using a larger iteration cycle of the a and φ parameters was also carried out for the compound I with the gradient-optimized geometry⁷. Comparison of the energy course with the original non-optimized geometry is given in Fig. 4. Obviously the energy profile remains qualitatively roughly unchanged, being only shifted by 144 kJ mol⁻¹ towards the region of lower energies. Thus the optimization⁷ has obviously no effect on qualitative characteristics of the system.

TABLE II

Arran	gement			Charges	. 10 ⁴		
φ, °	a, pm	4′	4″	3	4	5	
0.0	0		-181	-1 240	489	- 538	
13.7	25	-739	-169	-1227	722	-538	
13.7	50	-1 260	105	-1 195	821	- 522	
27.4	75	-2 081	73	-1 090	813	443	
27.4	100	-2 644	161	- 996	735	- 374	
41.1	125	-3362	412	851	544	-258	
41.1	150	-3 671	442	- 769	427	-191	
54.7	175	-4 009	610	-677	231	-125	
54.7	200	-4 008	580	-635	160	-94	
54.7	250	-4 099	529	- 582	42	- 55	
54-7	300	-4 039	489	- 555	-43	34	
54.7	350	3 964	460	- 539	-103	-23	
54.7	400	-3 896	439	- 531	-146	-16	
54.7	450	-3 835	421	- 525	-178	-11	
54.7	500	3 781	409	- 520	-207	7 ·	
547	500	5 701	402	. 520	207	'	

Distribution of CNDO/2 charges at selected centres of the original (non-optimized) molecule I for certain combinations of a and φ geometry parameters

Also the course of changes of charges and electron densities given in Tables V and VI, respectively, resembles very much the previous situation, the strengthening of π interaction of H(4')--C(4) centres only being not so distinct during the abstraction course.

TABLE III

Arrangement		Density . 10 ⁴							
φ,°	a, pm	H(4')—C(4)S	H(4')—C(4)PX	H(4′)—C(4)PY	H(4')—C(4)PZ				
0.0	0	4 811	39	8 448	-261				
13.7	25	3 975	- 36	8 621	542				
13.7	50	3 546	-36	8 479	655				
27.4	75	2 588	- 29	8 110	1 717				
27.4	100	2 251	-27	7 673	1 832				
41.1	125	1 223	-18	6 916	2 894				
4 1 ·1	150	1 048	-16	6 533	2 912				
54.7	175	36	-4	5 683	3 805				
54.7	200	0	-2	5 497	3 768				
54.7	250	-18	-1	5 293	3 709				
54.7	300	-13	1	5 205	3 673				
54.7	350	7	0	5 166	3 652				
54.7	400	-4	0	5 147	3 640				
54·7	450	-2	0	5 1 3 7	3 633				
54.7	500	-1	0	5 131	3 628				

Changes of electron densities in the course of abstraction of H(4') centre from the original (non-optimized) molecule *I* for certain combinations of *a* and φ geometry parameters

Krechl, Kuthan:

TABLE IV

Expansion coefficients $|c_i| \ge 0.1$ of the frontier orbitals HOMO and LUMO for various combinations of the *a* and φ geometry parameters for the original (non-optimized) molecule *I*

40				А	rrangeme	nt ^a			
AO	А	В	С	D	Е	F	G	н	Ĩ
				ном	0	,			
H(4')	-0.24	-0.36	-0.47	-0.64	-0.73	-0.79	-0.81		-0.83
H(4'')	0.24	0.22	0.21	0.17	0.14	_	_	_ 005	_
N(1)PY	-0.47	-0.45	0.42	0-35	-0.29	0.25	-0.22	-0.21	-0.20
N(I)PZ	-0.34	-0.32	-0.30	-0.25	-0.21	-0.18	-0.16	-0.15	-0.14
C(2)PY	0.18	0.17	0.16	0.14	0.14	0.14	0.14	0.15	0.15
C(2)PZ	0.12	0.13	0.13	0.13	0.12	0.11	0.11	0.10	0.10
C(3)PY	0.35	0.35	0.33	0.27	0.22	0.17	0.14	0.11	0.10
C(3)PZ	0.25	0.23	0.21	0.16	0.13	0.10	_	_	_
C(4)PY	-0.12	-0.15	-0.18	-0.25	-0.29	-0.30	-0.31	-0.28	-0.28
C(4)PZ		_		-0.12	-0.12	-0.17	-0.17	-0.22	-0.22
C(5)PY	0.27	0.27	0.26	0.22	0.18	0.13	0.11		_
C(5)PZ	0.19	0.18	0.16	0.13		_	_	_	_
C(6)PY	0.12	0.14	0.14	0.15	0.15	0.16	0.15	0.16	0.16
C(6)PZ	0.10	0.11	0.12	0.13	0.13	0.13	0.12	0.12	0.11
O(3')PY	-0.25	0.23	-0.50	-0.15	-0.11			_	_
O(3')PZ	-0.17	-0.17	-0.16	-0.12	_		—	_	—
				LUM	0				
17(4)		0.10	0.54	0.50	0.57	0.54	0.54	0.54	0.54
H(4)	- 15	0.18	0.36	0.39	0.57	0.36	0.54	0.34	0.34
N(I)PY	-0.15	-0.12	-0.22	-0.22	-0.23	-0.25	-0.27	-0.28	-0.29
N(I)PZ	-0.10	-0.13	-0.15	-0.15	-0.16		0.19	0.20	-0.26
C(2)PT	0.31	0.29	0.35	0.20	0.24	0.25	0.25	0.26	0.18
C(2)PZ	0.30	0.33	0.12	0.77	0.20	0.20	0.19	0.19	0.18
C(3)F I	-0.32	-0.32	-0.13	_	_	_	_	_	
C(3)FZ	-0.23	-0.22	-0.16	0.53	0.55	0.52	0.52	0.48	0.48
C(4)PT		-011	-0.40	-0.17	-0.17	-0.33	-0.32	-0.32	-0.32
C(6)PV	_0.13		0.22	-017	-017	0.26	0.26	0.27	0.27
C(6)P7	-015	_	0.18	0.20	0.20	0.20	0.20	0.20	0.20
C(3')PV	_0.34	-0.31	- 10	0 20	0 20	0 20	0 20	- 20	
C(3')PZ	-0.23	-0.22	_	_	_	_			_
O(3')PY	0.29	0.27	_	_	_		-	_	_
O(3')PZ	0.20	0.19		_	_	_	_	_	_
N(3')PY	0.16	0.15		_	_	_	_	_	
N(3')PZ	0.11	0.11		_	_	_	_		
	5	<i></i>							

^a A corresponds to the arrangement a = 0 pm, $\varphi = 0.0^{\circ}$, similarly B(13.7/25), C(13.7/50), D(27.4/75), E(27.4/100), F(41.1/125), G(41.1/150), H(54.7/175), I(54.7/200).

1626

TABLE V

Distribution of CNDO/2 charges at selected centres of the optimized molecule I for certain combinations of a and φ geometry parameters

Arran	gement	Charges . 10 ⁴				
φ,°	a, pm	4'	4″	3	4	5
0.0	0	341	-341	-1 137	786	- 523
13.7	50	-1568	-194	-1048	1 034	492
27.4	100	-3052	166	792	827	- 302
41.1	150	-4 032	482	- 553	472	109
54.7	200	-4343	567	436	233	-16
54.7	250	-4 321	500	- 390	133	22
54.7	300	4 240	451	- 367	60	43
54·7	350	-4155	416	356	10	54
54.7	400	-4 076	390	-350	-28	61
54·7	450	-4 013	369	345	56	66
54.7	500	- 3 956	354	-342	-79	70

FIG. 4

Energy profile of abstraction of H(4') hydrogen centre with simultaneous rehybridization of C(4) carbon centre in the molecule *I*. Full line denotes the dependence for the original geometry of *I* (ref.⁵), dashed line for the optimized geometry of *I* (ref.⁷), dotted line for radical cation I^{+} .

1628

TABLE VI

Changes of electron densities in the course of abstraction of H(4') centre from the molecule *I* for certain combinations of the *a* and φ geometry parameters (optimized geometry)

Arran	gement	Density . 10 ⁴						
φ, °	a pm	H(4')—C(4)S	H(4')—C(4)PX	H(4')C(4)PY	H(4')—C(4)PZ			
0.0	0	4 559	53	5 289	6 626			
13-7	50	3 262	45	4 348	7 106			
27.4	100	1 929	28	2 713	7 000			
41.1	150	713	9	1 079	6 588			
54.7	200	- 52	-3	57	6 192			
54.7	250	40	-2	8	6 007			
54.7	300	-23	1	- 2	5 923			
54.7	350	-11	0	··· — 3	5 886			
54.7	400	-5	0	-2	5 867			
54.7	450	-2	0	1	5 856			
54.7	500	1	0	. 0	5 849			

TABLE VII

Distribution CNDO/2 charges at selected centres of compound I for certain combinations of the a and φ geometry parameters (optimized geometry, radical cation I^{+})

Arran	Arrangement			Charges . 10 ⁴				
 <i>φ</i> , °	<i>a</i> , pm	4′	4″	3	4	5		
0.0	0	797	797	147	199	403		
13.7	50	743	726	31	554	213		
27.4	100	463	714	-263	996	47		
41.1	150	97	736	- 305	1 172	118		
54.7	200	12	734	- 307	1 199			
54.7	250	2	732	-307	1 204	-129		
54.7	300	1	731	- 307	1 204			
54.7	350	0	731	-307	1 204	-129		
54.7	400	0	731	- 307	1 204	-129		
54.7	450	0	731	- 307	1 204	-129		
54.7	500	0	731	-307	1 204	-129		

Density . 10⁴ Arrangement φ, \circ a, pm H(4')-C(4)S H(4')--C(4)PX H(4') - C(4)PYH(4') - C(4)PZ0.0 0 4 590 5 262 6 1 8 1 13.7 3 1 3 6 43 4 1 3 5 6 0 0 3 50 1 976 3 766 27.4100 1 406 19 1 608 $41 \cdot 1$ 150 404 4 636 54.7 200 84 0 188 613 67 54.7 250 24 0 240 54.7 300 6 0 23 91 54.7 350 1 0 8 37 2 13 54.7 400 0 0 4 54.7 450 0 9 1 0 2 54.7 500 0 0

Fig. 4 it follows that the energy changes connected with changes of the geometry parameters a and φ show a not very distinct barrier for a = 100 pm, $\varphi = 27 \cdot 4^{\circ}$ which could partially stabilize the dissociated system. The distribution of atomic char-

TABLE VIII

Changes of electron densities in the course of abstraction of H(4') centre from the molecule I for certain combinations of the a and φ geometry parameters (optimized geometry, radical cation I^+)

ges given in Table VII shows that the H(4') atom being abstracted leaves as a neutral particle, which would indicate that it exists in radical form for a > 350 pm. According to Table VIII the electron densities at the H(4')—C(4) bond indicate that increasing distance between the H(4') atom and the heterocycle is accompanied by complete cleavage of the bond to the C(4) centre.

From comparison of charges at the H(4') centre being abstracted (Fig. 5) in the three above-mentioned calculation series it can be concluded that, in case of the neutral molecule I, the leaving H(4') centre takes a considerable negative charge with it. Distinct π interaction of this centre with the C(4) atom (Tables III and VI) obviously causes that the former centre does not acquire exclusively the anion character, the expansion coefficients of the frontier orbitals (Table IV) admitting the radical character, too. If the original molecule was rid of one electron in some preceding process and exists in the form of the radical cation I^+ , then the H(4') centre being abstracted acquires an exclusively radical character, and from Table VIII it follows that the bond to the heterocycle is entirely cleaved. Hence it seems likely that the electronic mechanism of abstraction of the H(4') hydrogen centre depends on whether or not the molecule I (as a model of the NADH coenzyme) has given away one of its electrons in a preceding process. From the results given it follows that the energy profiles obtained by the EHT and CNDO/2 methods for identical trajectories differ in that the latter calculation method gives no energy barrier for the C(4)—H(4')bond splitting in compound I and gives a somewhat lower extent of negative charge transfer at the leaving atomic centre H(4'). The latter finding is probably connected with the known tendency of the simple EHT procedure to overestimation of localization of electronic charges at atomic centres. Nevertheless, both the EHT and the CNDO/2 approaches indicate a possibility of the C(4)-H(4') bond heterolysis producing hydride ion, however, the CNDO/2 calculation does not exclude the one--electron splitting mechanism via the radical cation I^{+} , too, the study of which gave physically unreal results of the EHT procedure⁵ due to neglection of electronic repulsion. However, relative advantages of the two CNDO/2 coordinates for the monoand bielectronic course (Fig. 4) cannot be unambiguously judged within the framework of the used approximation of the isolated I molecule, because influences of other reaction partners can modify these energy profiles in various ways. Disposition of molecule I to the above-mentioned C(4)—H(4') bond splittings will be investigated in further studies at a non-empirical level taking into account the role of correlation energy.

REFERENCES

- 1. Fischer H. F., Conn E. E., Vennesland B., Westheimer F. H.: J. Biol. Chem. 202, 687 (1953).
- 2. Pullman M. E., San Pietro A., Colowick S. P.: J. Biol. Chem. 206, 129 (1954).
- 3. Akhtar M., Jones C.: Tetrahedron 34, 813 (1978).

Calculations of Biologically Important Compounds

- 4. Bruice T. C., Benkovic S. in the book: *Bioorganic Mechanisms*, Vol. II. Benjamin, New York 1966.
- 5. Krechl J., Kuthan J.: This Journal 45, 2425 (1980).
- 6. Krechl J., Kuthan J.: This Journal 46, 740 (1981).
- 7. Böhm S., Kuthan J.: This Journal, in press.

Translated by J. Panchartek.